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Fractal space-time: a geometric analogue of relativistic 
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Abstract. We consider a ‘thought experiment’ in  which particles are confined to move 
on fractal trajectories in both space and time, treating the case of a Peano-Moore trajectory 
in detail. Generalising these results, we use the classical principle of relativity and a 
correspondence principle to show that fractal trajectories in space with Hausdorff 
dimension D = 2 exhibit both an uncertainty principle and a de Broglie relation. The 
incorporation of fractal time with D = 2 places an upper bound on the macroscopic 
velocities of ‘fractalons’, which in turn requires that the macroscopic physics be Lorentz 
covariant. On a microscopic scale, the presence of fractal time is interpreted in terms of 
the appearance of particle-antiparticle pairs when observation energies become of the 
order of mc2.  

We propose two field equation descriptions of fractalons based on random walk 
space-time trajectories and subsequently relate these equations to the free particle 
Klein-Gordon and Dirac equations respectively. 

1. Introduction 

Newton’s first law states that every particle persists in a state of rest or uniform motion 
in a straight line, unless acted upon by an external force. However, as pointed out 
by Feynman (Feynman and Hibbs 1965), the paths of quantum mechanical particles 
look more like non-differentiable curves than straight lines when examined on a fine 
scale. Furthermore, relativistic interaction with particles at sufficiently high energies 
produces particle number non-conservation. As a result of these and other difficulties, 
quantum mechanics has traditionally abandoned the concept of a point particle and 
its attendant trajectory in favour of wavepackets or field excitations. An exception 
to this is provided by the path integral formulation of quantum mechanics (Feynman 
1948) in which the particle trajectory plays an important role. One of the main 
advantages of this formulation is that it has strong intuitive appeal in its reference to 
a sum over continuous trajectories in space. 

In light of this, a general question that one might ask is: to what extent may we 
construct continuous trajectories in space-time that exhibit features analogous to 
those found in relativistic quantum mechanics? In this paper we address this question 
by considering the physics of particles which are confined to move on fractal trajectories 
in space and time. Our motivation for doing this is to determine whether such a 
change in microscopic geometry yields any phenomena resembling quantum physics. 
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The answer we obtain, while far from complete, is suggestive that such microscopic 
geometry may provide several features generally associated with relativistic quantum 
mechanics. We stress however that the article is not intended as a derivation of 
quantum mechanics. Rather it is intended to draw an identification between concepts 
arising from fractal space-time, and those existing in quantum mechanics. 

The paper is organised as follows. 
In 8 2 we motivate the study of fractal space-time by investigating the motion of 

a particle confined to move on a particular fractal trajectory in space. We find that 
such a particle exhibits an uncertainty principle, but has an infinite instantaneous 
velocity, as in the case of a Brownian particle. 

In 8 3 we introduce fractal time. This places an upper bound on instantaneous 
velocities, at the expense of maintaining a single-particle interpretation in topologically 
one-dimensional time. We then propose ‘idealised fractal space-time’ and examine 
the phase diagram for free ‘fractalons’ in terms of scale. We notice that there are 
three phases corresponding to classical, quantum and field-like behaviour, depending 
on the scale of observation. 

In 9 4 we invoke a correspondence principle between the macroscopic and micro- 
scopic regime of fractalons. This, along with the classical relativity principle, yields 
a de Broglie relation between macroscopic momentum and ‘fractal wavelength’. 
Furthermore, we see that the macroscopic physics must be Lorentz covariant. 

In 9 5 we discuss the space-time synchronisation implicit in previous sections and 
propose the use of a topologically six-dimensional space-time in which to embed 
fractal trajectories. 

Finally, in 9 6 we propose a simple random walk model of fractal space-time, and 
show that the resulting field equation may be related to the free-particle Klein-Gordon 
equation by a simple ansatz. We then show that a more detailed description of this 
model in one dimension yields the free-particle Dirac equation. 

2. Fractal space 

The term ‘fractal’ has been recently coined by Mandelbrot (1977) for objects whose 
topological and Hausdorff dimensions do  not coincide. For an excellent exposition of 
the properties and uses of fractals we refer the reader to the above text. 

In the following we shall use the Peano-Moore curve of figure 1 as a model of a 
fractal trajectory. We choose this curve because it is a simple example of a fractal 
with a Hausdorff dimension of 2, although any continuous fractal with D = 2 would 
lead to the same qualitative results. 

Figures l (a)-(c)  show the trajectory of a hypothetical particle as finer detail is 
revealed through measurement with increasing precision. We shall assume that the 
particle traverses the distance AB in a time to  regardless of the scale on which the 
trajectory is examined. If we let 

77, = A (41“ n =o ,  1 , .  , . 
be the unit of measurement we find that (figure 1) 

L n  = A (A/Vn)  and un = u o ( A / T n )  

where L,  is the apparent length of the trajectory at a resolution 77, and U,, is the 
apparent speed of the particle. 
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Figure 1. A particle’s trajectory in space as observed with increasing resolution. Curves 
( a ) ,  ( b )  and ( c )  correspond to scales = A ,  q = A / 3  and = A/9  respectively. 

Suppressing the n dependence of L and U, we may write 

Here, equation (2.1) serves to define the similarity dimension D which in this case is 
2. (The relationship between similarity, fractal and Hausdorff dimension is discussed 
in Mandelbrot (1977). We shall use the terms interchangeably.) 

We note that in general trajectories with different geometries will have different 
Hausdorff dimensions. The significance of the exponent D = 2 in (2.1) and (2.2) is 
that the Peano-Moore curve is essentially ‘plane filling’. The usual rectifiable trajec- 
tories of classical physics would have D = 1. 

We now consider the expected value of the x component of the velocity as a 
function of q, We do this by weighting each possible value of u x  according to the 
time spent with that particular velocity. For example, from figure ( l b )  we have 

( U , ( A / ~ ) ) = % U ( A / ~ ) + ~ [ - U ( A / ~ ) ] + % ~ O = U O .  (2.3) 

(U, (77 )> = U0 

Similarly we expect in general 

rl < A  

However, if we now calculate (U: ( q ) )  we have for example 

( U ~ ( A / ~ ) ) = % [ U ( A / ~ ) ] ~ + ~ [ - U ( A / ~ ) ] ~ + ~ % O ~ = ~ ( ~ U O ) ~ .  
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Thus within the framework of our rather specialised measurement procedure, the 
product of the uncertainties in the x component of the velocity and the position of 
our hypothetical particle becomes independent of scale for 77 << A ,  provided that the 
Hausdorff dimension of the trajectory is 2. By comparison, the fact that quantum 
mechanical particles move statistically on fractal paths with Hausdorff dimension 2 
has been shown by Abbot and Wise (1980) and Campesino-Romeo er a1 (1982). 

Apart from the rather implausible regularity of the above trajectory, our 
hypothetical particle has the unphysical attribute of an infinite instantaneous velocity 
(2.2). We shall remedy this situation in the next section. 

3. Fractal time 

Thus far we have assumed that time has both a topological and Hausdorff dimension 
of 1. Let us now suppose, by analogy with space, that temporal trajectories also have 
Hausdorff dimensions of 2, with fractal wavelengths T ,  say, depending on the trajectory 
in question. Whereas a continuous fractal trajectory in space is easily pictured (figure 
l ) ,  a continuous fractal trajectory in time requires an extra topological dimension in 
time for visualisation (figure 2).  We shall consider this extra dimension to be unobserv- 
able directly. That is, we shall assume that an observer’s clock has T = 0 and that a 
fractal trajectory in time appears as a projection onto one time axis. 

Figure 2 shows a ‘fractalon’ on a time scale of 7/3 with spatial and temporal fractal 
behaviour synchronised. On this scale the particle ‘sees’ a continuous trajectory in 
time of length 37’ between a and d, as well as a spatial distance of 3A*. However, 
an observer will see the projected time between a and d to be T ~ .  The fractal nature 
of time would seem to be manifest at point b by the ‘destruction’ of the original 
particle along with the ‘creation’ of three new particles. Two of these new particles 
appear exactly like the old particle except that they are displaced from the x axis. 
The third particle has the appearance of an ‘antiparticle’ moving along the x axis (its 
trajectory moves backwards in time from t l  = ?T to t l  = $7). 

Thus on time scales below T a single-particle description of fractalons breaks down 
if we restrict ourselves to a topologically one-dimensional time. We note, however, 
that if A * is the spatial scale at which fractal time is incipient, i.e. if 

A * / u ( A * )  = T  (3 .1)  

and if uo < w = A / T  then U (A *) is the maximum observable velocity of the fractalon 

2 
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Figure 2. A fractal trajectory synchronised in space and time. ( b )  The trajectory with 
time projected onto the t ,  axis. Since the trajectory from c to b is traversed in the negative 
t l  direction, we interpret this as an antiparticle traversing bc in the positive t l  direction. 

(e.g. in figure 2, u ( A  */3) = L(A */3)/.rad(A */3) = 3L(A * ) / ~ T , ~ ( A  *) = U (A  *) etc). Indeed, 
we may say that the fractalon (A,  U, w )  corresponds to a particle that moves on a 
continuous fractal trajectory in space and time, with the constant velocity 

- 
c = J u w  

on time scales below T = A/w where the time is measured on a ‘fractalclock’ with 
Hausdorff dimension 2 and wavelength 7. The maximum velocity c = J u w  is obtained 
by solving (3.1) for u ( A * ) .  We note that this relation is the analogue of the equation 
relating the group and phase velocities of a wavepacket. 

With the above particle-antiparticle interpretation we note that for our particular 
fractal trajectory the particle number is not conserved, although the number of particles 
minus the number of antiparticles, or the particle excess, is conserved and is always 
1. Furthermore, for U < w the process is continuous in the x direction in the sense 
that a particle excess of 1 has to ‘pass’ any given point on the x axis between a and 
d with finite velocity in observer time regardless of scale. If U > w the situation is 
quite different (figure 3). Here the trajectory has gaps in it which are traversed by 
the fractalon in fractal time which is ‘lost’ through projection onto one dimension. 
Thus the particle excess which passes any given point on the x axis between a and d 
varies from point to point and is dependent on scale. We shall assume that such scale 
dependence fundamentally distinguishes fractalons with U > w from fractalons with 
U s w and shall consider only the latter type here. 

In the following we set aside questions on the specific geometry of fractal trajectories 
and assume that fractalons possess an intrinsically synchronised space-time. We further 
assume the idealised behaviour of figure 5 so that free fractalons may be completely 
characterised by the ordered triple (A,  U, w ), specifying their wavelength, macroscopic 
velocity and phase velocity respectively. We shall discuss these assumptions in § 5 .  

Let us consider the set of fractalons 

O c = { ( A , ~ , w ) ~ h , ~ v ~ , ~ ~ O , u ~ ~  andlvlw = c 2 }  (3.3) 
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Figure 3. A fractal trajectory with t' > w.  (a )  q = A * ,  the trajectory is continuous. ( b )  
q = A * /3  > A  ; here the length of the spatial trajectory has not changed from ( a )  although 
the velocity has dropped to V(A*)/3 leaving gaps in the particle trajectory. 

where c is some positive number. We note that 0, is the set of all fractalons with 
maximum expected velocity c such that U s c. 

Let Tu be a transformation to an inertial frame moving with constant speed U < c  
in the x direction (figure 4). We wish to observe the effect of Tu on an arbitrary 
member of O,, which we shall denote by (A, U),. Since Tu is a kinematic transformation, 
it cannot change the fundamental character of a fractalon so that if 

Tu(h, U), = ( A ' ,  U'),' (3.4) 
we must have U '  < c ' .  

In order that ( A ,  U), serve as a model of a free particle, we require that it have 
some representation (mo, o)  with mo an inertial mass and U a macroscopic velocity. 
The inertial mass will serve to identify the particle through changes in inertial frames, 
i.e. 

Tu(mo, U )  = ( ~ O U ' ) .  (3.5) 
Let us now propose the identification 

(mo, U 1 c-* (A ,  U 1,. (3.6) 

Figure 4. 
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This identification would imply that the particle (mo,  U )  has a maximum expected 
velocity of c in the inertial frame in which its macroscopic velocity is u .  If, however, 
the particle’s maximum speed depends on its macroscopic velocity in an inertial frame, 
it may be used to violate the classical relativity principle. We must then have 

Tu(A, U), = ( A ’ ,  U’), (3 .7)  
where u ’  s c. 

Stated another way, for the fractalons in 0, to obey the classical relativity principle, 
Tu must be an automorphism on 0,. We also notice that fractalons on the boundary 
of 0, (i.e. fractalons of the form ( A ,  c) ,)  must remain on the boundary under an inertial 
transformation, i.e. 

(3.8) 

For Tu to preserve the boundary of 0,, Tu must depend on c. However, since Tu is 
a kinematic transformation and not dependent on the identity of a particle, c must 
be common to all particles. That is, if (A ,  U), corresponds to an observable particle 
(mo, U )  then all observable particles are such that uw = c2 ,  and 0, is the set of all 
observable particles. The phase diagram of such particles is sketched in figure 5 .  

Tu(A, c h  = ( A ’ ,  c),. 

I \ 

Figure 5. An idealised phase diagram for free fractalons. The ‘classical‘ phase for [ > A. 
is characterised by a scale-independent single-particle velocity. In the ’Schrodinger regime’ 
for A * < [ < A o  the single-particle velocity is inversely proportional to scale. In the ‘field‘ 
phase for [ < A *  particle velocities are scale independent but particle number is dependent 
on scale. 

We notice that the diagram distinguishes two types of particles, ‘heavy’ particles 
such that u < c and ‘light’ particles with L: = c. The diagram also suggests that heavy 
fractalons have three phases. In  the macroscopic phase, i.e. on scales above A ,  U, is 
independent of scale. On scales below A but above T we have a ‘Schrodinger’ phase 
where a single-particle description seems reasonable but where U, is scale dependent. 
Finally on scales below 7 a single-particle interpretation becomes inadequate, although 
particle velocities are scale independent. 

In the following section we establish connections between the three phases. 

4. Macroscopic correspondence 

From figure 5 we see that free fractalons appear to move on classical one-dimensional 
trajectories when viewed on a scale greater than the fractal wavelength. That is, a 
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classical treatment of fractalons would appear justified provided both measurement 
and interaction occur on scales greater than A. In  § 3 we made the identification 

( A o ,  udc+(mo, U O )  (4.1) 

where mo was taken as a macroscopic inertial mass that was invariant under Ian inertial 
transformation. This identification implied that there was an upper bound on macro- 
scopic velocities c and a collection of ‘light fractalons’ that move with velocity c 
regardless of inertial frame. The existence of such light fractalons, along with the 
classical relativity principle, is sufficient to require Tu to be Lorentzian. This being 
the case, we identify mo with the rest mass of the particle. 

Since Tu is Lorentzian, let us describe fractalons in the macroscopic regime by the 
relativistic mass 

m, = m o / ( l  -ug/c2)1 /2  (4.2) 

p = m,cO. (4.3) 

with macroscopic momentum 

To determine the macroscopic significance of A. for heavy fractalons let us make 
the assumption that m ,  is independent of scale. With this assumption we may rewrite 
(2.2) as 

mru (t7 1 = mrUo(t7/A ) l -D =P(t7 q CA 

i.e. P(V) =Po(tl/A)l-D q CA. 

Retracing the derivation of (2.4), we may then write 

Ax Ap, ZSJJpoho. (4.4) 

We note that the LHS of (4.4) has no explicit dependence on the mass of the particle 
or itsjelocity. Thus the RHS must be a constant independent of mass and velocity, 
say J5h /3 .  This yields the relation 

P O  = h/Ao. (4.5) 
Thus the fractal wavelength A of a fractalon is inversely proportional to its macroscopic 
momentum, and the relativistic mass m, is 

(4.6) m ,  = p O / u o  = h/houO. 

Substitution of (4.5) into (4.4) yields 

Ax A p ,  3 J?h/3.  (4.7) 

Equation (4.6) apparently gives us a full prescription for making the identification 
(4.1) in the case of heavy fractalons. Light fractalons, on the other hand, have no 
‘Schr0dinger’-like regime for which we may write equation (4.4). However since A 
is well defined for light fractalons let us assume that (4.5) also holds for light fractalons. 

With (4.5) providing the link between ‘fractalons’ and macroscopic entities with 
momentum and velocity, we may incorporate relativistic mechanics into the macro- 
scopic regime. We must, however, require that interactions and observations are 
restricted to scales greater than some A R ,  where A R  is a representative wavelength of 
the system. 
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Let us develop relativistic mechanics in the macroscopic regime to arrive at the 

(4.8) 

energy equation: 
2 E = m , c  . 

It is instructive to translate this relation into the ‘fractal’ representation. From 
(3 .2 )  we have 

2 c = vowo=  I J ~ A ~ / T ~ .  

Thus, using (4.6), we have 

E = m,voAo/ro = h / r O .  (4.9) 
Defining w o  = 2.rr/r0 and A = h / 2 ~  this becomes 

E =hwo (4 .10)  

where w o  is inversely proportional to the fractal wavelength in time for the fractalon. 
We also note that (4.8) implies the dispersion relation 

which also suggests that the rest mass on the light fractalon is zero, its energy being 

E = hc/ho.  

Finally, in order to interpret the fractal wavelength in time ro directly, we note 
from (4.9) that 

er0 = h/m,c 

is the ‘Compton wavelength’ of the fractalon. 

5. Idealised fractal space-time versus geometry 

In the above sketch of fractalon physics we have implicitly used idealised fractal 
space-time in which, for example, we have assumed that (2 .1)  and (2 .2)  hold without 
qualification as to the choice of length scales below A .  On the other hand, we have 
used the specific geometry of the Peano-Moore (PM) curve in order to interpret fractal 
time. We now investigate the compatibility of PM geometry with idealised fractal 
space-time. 

If we require that a particle move on a planar PM curve, then the requirement 
that the particle have commensurate spatial and temporal trajectories is easily seen 
to be 

vo = ($) kc k = 0 ,  1 , 2 , .  . . . 
This is clearly unacceptable for heavy fractalons since we require continuously variable 
macroscopic velocities. Although one might tamper with the PM geometry, maintaining 
the dimension while changing the ratio of the wavelengths in the two perpendicular 
directions, we see that this would vary vo at the expense of altering the two wavelengths 
in a prescribed way. We suspect that such unwanted coupling of wavelengths would 
be a characteristic of any such regular and compact planar geometry since a fractal 
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curve with D = 2 is ‘plane filling’. However, since the analogous problem in quantum 
mechanics suggests that no particle with finite rest mass can be confined to a planar 
trajectory while maintaining a well defined relativistic mass, we consider embedding 
non-planar fractal trajectories in three-space. 

For example, we may imagine a non-planar PM trajectory in which each self-similar 
figure is rotated through a random angle about its central axis. This curve would have 
the appropriate D = 2 while being non-planar. In three dimensions the spatial trail 
of a fractalon would have measure zero, and we might expect that, like a very loose 
ball of cotton, we might alter a wavelength in one direction, without changing the 
perpendicular wavelengths. In order to maintain synchronised space-time we could 
then require that on scales below A * = CT, the temporal trajectory be geometrically 
similar to the spatial geometry (with scale factor c).  This would then require a 
topologically three-dimensional space in which to embed the temporal trajectory on 
scales below T. Although such a six-dimensional space-time is not in common use as 
a description of physics, it has received some attention in relation to problems in 
special relativity (e.g. Cole 1980 and references therein). 

We note that, in the above scheme, it is the extra two topological dimensions in 
time that allow us to consider the trajectory to be continuous, and since our objective 
is to try to preserve a single-particle continuous-trajectory description, we see that 
we have done so at the expense of our usual conception of a one-dimensional time. 
In any detailed attempt to construct a physical theory based on synchronised space- 
time trajectories, this aspect would require very careful examination. 

However, if for the time being we accept that we may use a full six-dimensional 
space-time in which to invoke space-time synchronisation, the above non-planar PM 

curve appears to provide the correct qualitative features of idealised fractal space-time. 
We shall thus use the PM example as a guide for interpreting the behaviour of particles 
with more general microscopic geometries. 

6 .  A random walk model 

In previous sections we indicated a similarity between fractal space-time and quantum 
mechanics. The algebraic correspondence is illustrated in table 1, 

In this section we attempt to construct field equation descriptions of fractalons. 
To do this we use a simple model in which the underlying geometry is that of a 

Table 1. 

~~ 

Quantum mechanics Fractal mechanics Classical mechanics 
-~ 
A (de Broglie) A (fractal wavelength) - 
A c  (Compton) cr (fractal wavelength) - 
v g  (group velocity) U (macroscopic velocity) u 
m (mass) h / A v  = m m / [ l  - ( V ~ / C ~ ) ] ” ~  = m, 
vph  (phase velocity) w = A / ?  - 
c (velocity of light) c (velocity of light fractalons) c 
p = h/A  (momentum) p = h/A p = m,v 
E = h V p h / A  (energy) E = hw/A = mc2 E = mrc2 
V g V p h  = c u w  = c 2  - 
A x  Apx > h / 2  A x  Apx > J?(h /3 )  - 
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random walk with drift. This geometry has the advantage of being less artificial than 
the PM geometry, while having the correct fractal dimension. 

In particular, we imagine a particle of mass m moving in the ny plane with 
macroscopic momentum p = ( p x ,  p y ) .  We model this motion by considering a particle 
moving on a two-dimensional lattice with lattice spacings Ax and Ay. For Ax,  Ay >> 
A x ,  A, our lattice particle will hop in a regular sequence from lattice point to lattice 
point with a drift velocity of U = p / m .  As we refine the lattice, eventually Ax (Ay)  
becomes of the order of A, (A,) and at this point we require that 

(6.1) 

with the additional requirement that the motion be a random walk with drift. We 
assume, by analogy with the PM trajectory, that (6.1) will result in an uncertainty 
relation for the particle, as well as defining the fractal wavelengths. In the usual 
description of a transition from a random walk to a diffusion equation, (6.1) is the 
requirement At = O(Ax2). 

U ( A x )  -- [U, @ , / A x  1, U, ( A , / A y  11 Ax ( A Y ) < A x  ( A Y )  

As we refine the lattice further we eventually have 

A x = A y = h / m c = A *  (6.2) 
at which point u x ( A x )  = u,(Ay) = c. 

In accordance with our use of fractal time, further refinement of the lattice requires 
the use of a synchronised temporal trajectory, so that the spatial trajectory of our 
particle becomes a cloud of particle-antiparticle pairs when viewed in one-dimensional 
time. We assume that this procedure will yield a particle with the correct macroscopic 
momentum and energy relationships as in previous sections. In order to create a field 
description of the process, we extract the following features from the PM example of 
figure 6(a).  

In the figure we distinguish two types of vertices. Vertex a we call time-like since 
the particle experiences a synchronised space-time ‘scattering’ at that point. We note 
that inside area A, all the vertices are time-like, and if at some resolution Ax << A *  
there is a density of px time-like vertices on the x axis, then the density of time-like 
vertices in area A is proportional to p:.  Furthermore, the number of particles 
distinguishable at a given resolution is proportional to pz.  We also note that all 
particles in area A move with speed c in the x direction. 

Vertex b we call space-like because the trajectory changes direction in space at b 
while maintaining the same direction in time. We note that vertex b rotates the 
direction of motion by 7 ~ / 2  as the ‘process’ expands into area B. If py represents the 
density of time-like deflections along the y axis in area B then the number of particles 
in B is proportional to p:.  Thus for this example we could consider a vector field 
p(X,  Y, t )  defined at intermediate points on the lattice, say ( x  +$A *, y ), ( x ,  y + i A  *) 
where x and y are lattice points for the PM curve at resolution A * (e.g. e, b in figure 
6). Here p would represent the linear densities of active time-like deflections along 
the relevant bond in ( x ,  y ) ,  the sign of p representing the direction of ‘flow’ of the 
process. In the PM example p could take on the five values p = 0, *pxx*, *px9 ,  and 
we would have 

(6.3) XY c P 2 W ,  y, t )  = p :  

only one vertex being ‘active’ at any time t. We could then take p 2 ( X ,  Y, t )  as a 
relative probability density. 
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e 

Particle 

t,: LL (b l  

Figure 6. ( a )  The PM trajectory is initially confined to area A until the particle encounters 
vertex b. Thereupon the trajectory is rotated and confined to area B. Vertices like a and 
c are called time-like whereas vertex b is space-like. ( b )  The temporal trajectory of the 
particle in ( a )  with ‘spin’. Note that the trajectory from T to 2r may be obtained from 
the trajectory from 0 to T by a rotation of ?r about the tll axis. 

We note that if we follow the motion of the fractalon, time-like collisions leave p 
unaffected whereas space-like collisions rotate p by 7r/2. In this example space-like 
collisions occur precisely every 7 seconds, ensuring the maintenance of the PM 
geometry. 

In the random walk model we maintain the description in terms of a vector density 
while removing the restriction that the space-like collisions occur precisely every T 
seconds. Let us then consider the random walk case in which the lattice spacing is 
very much less than A * .  On this scale all the particles will move with speed c and 
will only occasionally encounter space-like vertices. We assume that such collisions 
will affect rotations of p in proportion to their numbers. Thus, following the motion 
of the process, we will assume that p changes only through infinitesimal rotations so 
that we may write 

P ~ ( X ,  Y , t + A t ) = p y ( X - h x , y ,  t ) - A  A t p , ( x - h x , y , t ) .  

If we write p as a complex number this yields to first order 

aplat = -C +/ax - iAp 

(6.4) 
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and similarly 

aplat = -C splay - i A ’ p .  (6.6) 

Since (6.4) is an infinitesimal rotation A must be the angular frequency of 
space-like collisions. The expected value of A for the particle would then be 

(total path length - expected displacement) 
A = 2 1 7 x  

= ~ T [ ( c  - u , ) / A  *] = 27r( 117 - CIA,). 
Ax A X = A *  

(6.7) 

If we substitute the plane wave solution 

p = po exp i(p,x - E t ) / h  (6.8) 

into (6.5) we obtain the relation 

E = P,C + h / T  - hc/A,. (6.9) 

Macroscopically we require that p x  = h / A x  so that (6.9) reduces to 

E = h1.r (6.10) 

which gives us the correct dispersion relation E2 = p2c2 + m ic4. As in the PM case we 
assume that p *(x, t ) p  (x, T )  is proportional to the expected particle-antiparticle density 
at a given scale, thus we might expect that p*p  can be interpreted as a relative 
probability density for the particle. 

However (6.8) is not the only solution to (6.5), the general solution taking the form 

dA f(A) exp i[27r(x/Ax - t / T )  + A(t -x/c)] (6.11) p (x, r )  = 

where f (A)  is some suitable density. 
This represents a superposition of plane waves of varying wavelength and 

frequency. The wave with h = 0 has the correct macroscopic dispersion relation; 
however, the remaining waves have correct dispersion relations only if the ‘rest mass’ 
is made a function of A .  To see why this is so we note that the quantity A in (6.4) 
has been chosen to be the ‘constant’ 2 7 r ( 1 / ~  - C I A x )  in (6.7). However, macroscopically 
this constant is just 

A = (2 r /h ) (E  -PC) (6.12) 

which is not a relativistic invariant. 
However, rewriting (6.5), we have 

(alar +C alax + i A ) p  = 0.  (6.13) 

Operating on the left with (alar -c  a lax  -iA) we have 

a2p/at2- c 2  a2p/ax2 = (-A* +2Aci a/ax)p. (6.14) 

Since the LHS of the equation is in covariant form we require that the operator on 
the RHS be covariant, with the additional requirement that A have the expected value 
assumed in (6.7) when operating on the plane wave solution (6.8). Substituting (6.8) 
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into (6.14) yields 

1 c2a>-( -4~2(L-L)2-4~(- - - )px)p 1 c  =i; i ( -E 1 2 + p x c  2 2  )p = - T m i c 4 .  (6.15) 
at2 ax T A  T A  h 

This equation has the desired relativistic invariance and the implied superposition 
is that of plane waves with identical rest masses. Equation (6.15) will be recognised 
as the Klein-Gordon equation for a spinless particle moving along the x axis. Similar 
arguments can be made for the projection onto the y axis of (6.6). 

If we wish to extend the above model to three spatial dimensions, we change our 
underlying fractal trajectory to that of a random walk with drift in three dimensions. 
We may then write an equation of the form (6.4) where py is taken as the linear 
density of active time-like deflections along a line perpendicular to the x axis and in 
a plane defined by the direction of the infinitesimal rotation, which we assume to be 
slowly varying on this scale. This leads to three equations of the form (6.15) in the 
variables x ,  y and z which we may combine into the Klein-Gordon equation in three 
dimensions: 

h 2 ( a 2 / a t 2 - ~ 2 ~ 2 ) p  = - m k 2 .  (6.16) 

Although the passage from the concept of a synchronised space-time trajectory 
to the above equation is at best heuristic, we feel that the only major qualitative 
feature inherent in solutions of (6.16) that is not apparent in the original fractalon 
picture is the implied superposition principle. Although a superposition principle is 
hinted at by the uncertainty relation for fractalons, and the macroscopic requirement 
of relativistic invariance restricts the form of this principle, (6.16) is still an ansatz. 
We would like to point out that the consistency of this ansatz with the 'geometric' 
interpretation needs to be verified. 

Equation (6.13) represents a synthesis of some of the qualitative features of the 
PM example, with an underlying stochastic geometry. However, one feature of the 
PM example that we did not model explicitly was the network of particles moving in 
a 'perpendicular' time direction. In figure 6(b) we note that the two particles and one 
antiparticle represented at time 7/2 are a result of the components of the trajectory 
perpendicular to t, at vertex d. 

Let us model this behaviour in one dimension. In the previous model we 
represented the particle probability density by the square of the linear density of 
active time-like vertices which we called px .  In order to include the part of the 
trajectories moving perpendicular to our time axis, we consider a complex density 
ILl(x,  t )  = $1 ( x ,  t )  +i$: (x ,  t )  in which 4: ( x ,  t )  represents the linear density of time-like 
vertices along tL. Similarly we will denote by &(x ,  t )  = $! ( x ,  r )  + i4; ( x ,  t )  the densities 
perpendicular in space to the x axis, and we shall assume that the probability density 
is 

(6.17) 
In the previous model we ignored the term in parentheses in (6.17) and assumed that 

and $! transformed in time as components of a vector under an infinitesimal 
rotation. That is, we assumed 

P ( x ,  t)al$l12+11L;1=$lp +*y +($t2 +$i2). 

$ I ( x ,  t + A t ) = @ l ( ~  - A X ,  t ) + A  A t $ 2 ( ~  - A X ,  t )  
(6.18) 

$ 2 ( ~ ,  t + A t )  = (L2(x  - A X ,  t ) - A  Att+hl(x - A X ,  t )  

which would lead to the Klein-Gordon equation for both components $" and 9'. 
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However, one may modify the PM example as in figure 6(b) so that the rotation 
at point b becomes improper. To imitate this we modify (6.18) to incorporate an 
improper rotation i.e. 

+hl(x, t + At) = $Z(X - Ax, t )  + ib Atr(ll(n - A x ,  t )  

4b2(x, t + At) = $ l ( x  - Ax, t )  -ib Arl12(x - A x ,  t ) .  
(6.19) 

We note that this transformation preserves the density (6.17) to O(At). If we now write 

and define the matrices 

a = - c (  0 1  ) P = b ( i  -1) 0 1 0  

then, equating first-order terms in (6.19), we have 

(I a la t  - Q alax - ip)* = 0 (6.20) 

where I is the unit matrix. Operating on (6.20) from the left with (I slat +a a lax  + ip )  
we have 

I(a2/at2 - c 2  a2/ax2 + b 2 ) 9  = 0. 

This is consistent with the Klein-Gordon equation if we choose b = moc2/h. With 
this choice of b we see that (6.20) is a representation of the free-particle Dirac equation 
for one-dimensional motion. 

It is interesting to note that the spinor character of the Dirac wavefunction arises, 
in the fractalon ‘picture’, from an improper rotation of the temporal trajectory at 
space-like vertices. In the PM version of figure 6(b), the temporal trajectory is rotated 
by 7~ radians at vertex b about the til axis. In (6.19) the temporal trajectory is rotated 
about tll with an angular frequency of b = moc2/h .  In this picture particle ‘spin’ seems 
to correspond to the rotation of the temporal trajectory about the ‘observer’ time axis. 

7. Conclusions 

In $ 5  1-5 we introduced the concept of fractal space-time through the use of syn- 
chronised PM trajectories. We noted that at least qualitatively plane filling spatial 
trajectories had several features in common with wavepackets. We then introduced 
synchronised fractal time which provided a mechanism whereby particle velocities 
could be made scale independent in spite of the fractal nature of spatial trajectories. 
We interpreted fractal time by assuming that only a one-dimensional projection of 
the temporal trajectory would be observable. On time scales below that of the fractal 
period of a particle, the two-dimensional nature of the temporal trajectory would be 
manifest in the appearance of particle-antiparticle pairs, the production of neutral 
pairs being guaranteed by the continuity of the trajectory. Throughout these sections 
we assumed that idealised fractal space-time was a reasonable and realisable abstrac- 
tion of the PM example, and we used features of both to draw a correspondence 
between the wavelengths of fractalons and the wavelengths of quantum mechanical 
particles. 
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In order to maintain the continuity and synchronisation of the space-time trajec- 
tories of fractalons, we invoked the use of a three-dimensional time-space. The extent 
of the extra dimensions would be small for real values of c and h. For example, a 
non-relativistic electron would move in a time cylinder with a diameter of the order 
of lo-*’ seconds. We note that the energy required to probe the extra dimensions 
of a particle’s trajectory would be greater than the relativistic energy of that particle. 
However, we have not considered further implications of the extra dimensions in 
time, neither have we attempted a description in which the fractal trajectory of time 
is confined to one dimension. 

In Q 6  we extracted some qualitative features of fractal space-time and the PM 

example in order to construct two field equation descriptions. In the first equation 
we used the argument of requiring macroscopic relativistic invariance, in order to 
invoke an appropriate superposition principle. This resulted in the free-particle 
Klein-Gordon equation. For the second equation we constructed a one-dimensional 
model in which the ‘density of time-like collisions’ was allowed to advance through 
improper rotations. We found this to yield the one-dimensional free-particle Dirac 
equation. 

Although our arguments have been mostly heuristic and the results consequently 
speculative, we feel that the objective of finding out to what extent the single 
particle-continuous trajectory paradigm can be maintained as a description of quantum 
phenomena is a legitimate objective. We hope this work will encourage interest in 
this question since we feel that the paradigm may not be as inadequate as hitherto 
supposed. 
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